Learning Gene Networks under SNP Perturbations Using eQTL Datasets
نویسندگان
چکیده
The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.
منابع مشابه
Correction: Learning Gene Networks under SNP Perturbations Using eQTL Datasets
The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to d...
متن کاملInference of SNP-Gene Regulatory Networks by Integrating Gene Expressions and Genetic Perturbations
In order to elucidate the overall relationships between gene expressions and genetic perturbations, we propose a network inference method to infer gene regulatory network where single nucleotide polymorphism (SNP) is involved as a regulator of genes. In the most of the network inferences named as SNP-gene regulatory network (SGRN) inference, pairs of SNP-gene are given by separately performing ...
متن کاملMatrix eQTL: ultra fast eQTL analysis via large matrix operations
MOTIVATION Expression quantitative trait loci (eQTL) analysis links variations in gene expression levels to genotypes. For modern datasets, eQTL analysis is a computationally intensive task as it involves testing for association of billions of transcript-SNP (single-nucleotide polymorphism) pair. The heavy computational burden makes eQTL analysis less popular and sometimes forces analysts to re...
متن کاملA Meta-Analysis Strategy for Gene Prioritization Using Gene Expression, SNP Genotype, and eQTL Data
In order to understand disease pathogenesis, improve medical diagnosis, or discover effective drug targets, it is important to identify significant genes deeply involved in human disease. For this purpose, many earlier approaches attempted to prioritize candidate genes using gene expression profiles or SNP genotype data, but they often suffer from producing many false-positive results. To addre...
متن کاملA Penalized Regression Model for the Joint Estimation of eQTL Associations and Gene Network Structure
Background: A critical task in the study of biological systems is understanding how gene expression is regulated within the cell. This problem is typically divided into multiple separate tasks, including performing eQTL mapping to identify SNP-gene relationships and estimating gene network structure to identify gene-gene relationships. Aim: In this work, we pursue a holistic approach to discove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014